Further Calculus V Cheat Sheet (A Level Only)

Arc Length of a Curve

Arc Length of a Curve Expressed in Cartesian Coordinates
Integration is used to find the arc length of a curve between two end points. Consider a differentiable curve $y=f(x)$, given in cartesian coordinates. To find the length of the arc of the curve between the points $x=a$ and $x=b$, the following formula is used:

$$
s=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

This formula is given in the formula booklet.
Example 1: Find the exact length of the arc of the curve $y=4 \cosh \left(\frac{x}{4}\right)$ between the points $x=0$ and $x=8$.
Find the derivative of $y=4 \cosh \left(\frac{x}{4}\right)$,
using the chain rule

$$
\frac{d y}{d x}=4 \cdot \frac{1}{4} \cdot \sinh \left(\frac{x}{4}\right)=\sinh \left(\frac{x}{4}\right)
$$ simplify $1+\left(\frac{d y}{2 x}\right)^{2}$ using the hyperbolic identity $\cosh ^{2}(x)-\sinh ^{2}(x) \equiv 1$. Take ust the positive square root as for $x \in[0,8], \cosh \left(\frac{x}{4}\right)>0$. Then evaluate the integral at each limit, remembering for the graph of this function inclumi for the graph of this fuct

the upper limit, $x=8$.

Arc Lengths of a Curve Expressed in Parametric Coordinates
For curves given by parametric equations, there is another formula, once again given in the formula booklet. For a curve defined via $x=x(t), y=y(t)$, the length of the arc length of the portion of the curve between the values $t=t_{1}$ and $t=t_{2}$ is given by

$$
s=\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t .
$$

Example 2: Find the exact arc length of the curve given by parametric equations $x=\sin ^{3}(t), y=\cos ^{3}(t)$ between $t=0$ and $t=\frac{\pi}{2}$.

```
Differentiate}x=x(t)\mathrm{ and }y=y(t
with respect to t. Square and sum these
    (\frac{dx}{dt}\mp@subsup{)}{}{2}+(\frac{dy}{dt})
Simplify by factorising out;
and }9\mp@subsup{\operatorname{sin}}{}{2}(t)\mp@subsup{\operatorname{cos}}{}{2}(t
and using the identity;
M}\begin{array}{c}{\mp@subsup{\operatorname{sin}}{}{2}(x)+\mp@subsup{\operatorname{cos}}{}{2}(x)\equiv}\\{\mathrm{ and the double angle formula;}}
    \operatorname{sin}(2x)=2\operatorname{sin}(x)\operatorname{cos}(x)
Evaluate the integral between the two
limits for tto find the arc length. The
the right.
```

Area of a Surface of Revolution
Area of a Surface of Revolution in Cartesian Coordinates
Rotating a curve around either axis generates a solid of revolution For curve defined between points $x=a$ and $x=b$, and rotated full turn around the x-axis, the Rotating a curve around either axis generates a solid of revolution. For a curve defined between points
following integral formula, given in the formula book, is used to find the area of a surface of revolution:

$$
s_{x}=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x .
$$

This formula will give the curved surface area of the solid but does not include the area of any bases that the solid may have.
Example 3 : Find the surface area of the cone of height 12 cm and base radius 9 cm by modelling the cone as a surface of revolution.

```
Model the cone with a straight line revolved
around the x-axis with the vertex at the
radius of 9, the straight line connecting the
vertex to the base must pass through the
point (12,9). So, the straight line is given by
the equation }y=\frac{\overline{12}}{12}\mathrm{ . Find the derivative of
this function, and then use this to find:
    1+(\frac{dy}{dx})
As the height of the cone is 12 and the
As the height of the cone is 12 and the
x=0 and x=12. Evaluating the integral 
l
obtain the total surface area of the cone.
```

$y=\frac{9}{12} x=\frac{3}{4} x \cdot \frac{d y}{d x}=\frac{3}{4} \Rightarrow \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{1+\frac{9}{16}}=\frac{5}{4}$
$\therefore S_{x}=\int_{0}^{12} 2 \pi \cdot \frac{3}{4} x \cdot \frac{5}{4} d x=\frac{15 \pi}{8} \int_{0}^{12} x d x=\frac{15 \pi}{16}\left[x^{2}\right]_{0}^{12}$
$=135 \pi \mathrm{~cm}^{2}$.

Area of the circular base:
$\quad \pi r^{2}=\pi(9)^{2}=81 \pi$
\therefore Total surface area is

Surface Area of Revolution in Parametric Coordinates
 inates

 between the points $t=t_{1}$ and $t=t_{2}$, the surface area of revolution is given by$$
S_{x}=\int_{t_{1}}^{t_{2}} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t .
$$

Example 4: A curve is defined by the parametric equations $x=2 \sinh (t), y=-1-\cosh (2 t)$. The arc of this curve between $t=0$ and $t=\ln (2)$ is rotated 2π radians about the x-axis. Find the area of the resulting surface of revolution.

Begin by differentiating
Begin by differentiatin
$x=x(t), y=y(t)$. Find and simplify an expression for;
$y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$
using a double angle
formula for hyperbolic
trigonometric functions
and by using a
hyperbolic identity. Use
the exponential
definition of cosh($t)$
definition of $\cosh (t)$ to
given limits. The solid of given imits. he solid
revolution is shown in the graph on the right.

$$
\frac{d x}{d t}=2 \cosh (t), \frac{d y}{d t}=\sinh (2 t) \Rightarrow\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=4 \cosh ^{2}(t)+\sinh ^{2}(2 t)
$$

$$
\sinh (2 t)=2 \sinh (t) \cosh (t), \cosh ^{2}(t)=1+\sinh ^{2}(t) \Rightarrow
$$

$$
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=4 \cosh ^{2}(t)\left(1+\sinh ^{2}(t)\right)=4 \cosh ^{4}(t)
$$

$$
\therefore y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}=\frac{1}{2} \cosh (2 t) \sqrt{4 \cosh ^{4}(t)}=\cosh (2 t) \cosh ^{2}(t)
$$

$\cosh (2 t) \cosh ^{2}(t)=\frac{1}{8}\left(e^{x}+e^{-x}\right)^{2}\left(e^{2 x}+e^{-2 x}\right)=\frac{1}{8}\left(e^{4 x}+2 e^{2 x}+2 e^{-2 x}+e^{-4 x}+2\right)$

$$
\begin{aligned}
\therefore S_{x}= & 2 \pi \int_{0}^{\ln (2)} \cosh ^{2}(t) \cosh (2 t) d t=\frac{\pi}{4} \int_{0}^{\ln (2)} e^{4 x}+2 e^{2 x}+2 e^{-2 x}+e^{-4 x}+2 d t \\
& =\frac{\pi}{4}\left[\frac{e^{4 x}}{4}+e^{2 x}-e^{-2 x}-\frac{e^{-4 x}}{4}+2 x\right]_{0}^{\ln (2)}=\frac{\pi(495+128 \ln (2))}{256}
\end{aligned}
$$

